carenze foglie

Quando le piante ci parlano

Quando le piante ci parlano ci lanciano dei segnali a volte sfumati e a volte eclatanti circa lo stato di sofferenza per la carenza o l’ eccesso di uno o più nutrienti o attraverso una crescita rigogliosa e colori intensi.

Riconoscere questi segnali ci aiuta a correggere la fertilizzazione.

carenze foglie
Principali carenze

Pertanto passiamo in rassegna i singoli nutrienti principali, sia i macro che i micro elementi, evidenziando cosa comporta ognuno di essi e come reagisce la pianta in caso di una carenza o di un eccesso.

Carbonio (C)Il carbonio è l’ elemento chimico senza il quale nessuna forma vivente potrebbe esistere. Esso forma insieme all’ idrogeno le strutture di base di tutte le sostanze organiche. La fonte di carbonio per le piante è rappresentata essenzialmente dalla CO2 che viene assorbita dalle foglie. La CO2 solubilizza parzialmente in acqua in base alla temperatura del liquido ed alla pressione esercitata dall’ atmosfera sulla superficie. Esiste un equilibrio costante tra le molecole di gas che entrano in acqua con quelle che ne escono. Inoltre una piccola parte viene prodotta direttamente in acquario a seguito della respirazione cellulare degli animali, dei batteri  e delle piante nella fase notturna. Se per alcune piante questa quantità di CO2 può risultare sufficiente per molte altre, soprattutto quelle a crescita veloce e per varietà “esigenti”, la CO2 è quasi sempre insufficiente. Grazie a questo gas il carbonio assorbito tramite le foglie viene utilizzato dalle piante per formare  attraverso complesse reazioni le sostanze energetiche (amidi) e quelle plastiche (cellulosa). Esse vengono prodotte senza sosta quindi sia nella fase attiva della fotosintesi (luce) che in quella oscura (buio). Se la CO2 si rivela indispensabile per le piante più esigenti è bene sapere che anche quelle meno esigenti ne traggono un grande vantaggio in termini di crescita. Una bassa concentrazione di CO2 comporta una riduzione della crescita delle piante, le foglie si presentano più piccole e spesso gli internodi si allungano. Molte piante rispondono ad una carenza di CO2 avviando un processo energeticamente molto dispendioso per loro consistente nel produrre esse stesse l’ anidride carbonica  attraverso la decalcificazione biogena. Le lamine fogliari superiori ed inferiori diventano un intenso laboratorio per produrre la CO2 utilizzando l’ idrogenocarbonato (HCO3) presente in acqua. Ciò comporta un sottile deposito calcareo sulla pagina superiore della foglia facilmente visibile sulla elodea densa che è una delle specie più attive da questo punto di vista. Quindi l’ uso della CO2 in acquario è sempre raccomandato.

 

 

Azoto (N) – Esso costituisce uno dei tre macro elementi fondamentali e può essere somministrato alle piante sia sotto forma inorganica (ammonio e nitrato) che organica (urea come fonte di azoto che deve essere prima trasformata in composto inorganico). Una parte di tutti questi composti vengono prodotti in acquario dal metabolismo dei pesci e di altri animali e dal catabolismo di feci, foglie morte ed eccesso di cibo. Non entro nel merito di questi processi che troviamo ben descritti nel ciclo dell’ azoto di cui rimando la lettura cliccando sul seguente link (https://acquariofili.com/ciclo-azotato/). A differenza del nitrato (NO3) l’ ammonio (NH4+) viene assorbito con più facilità in quanto l’ assorbimento dei NO3richiede alle piante uno sforzo in termini di energia maggiore dovendolo trasformare in NH4+ . Poiché l’ NH4+ è in equilibrio in acqua con l’ ammoniaca (NH3) la cui tossicità è nota a livello delle mucose e delle branche è bene evitare che il pH sia superiore a 7,5 non solo quando utilizziamo fertilizzanti contenenti ammonio ma anche nella normale conduzione della vasca. La reazione di equilibrio                NH3 + H2O <=> NH4+ + OH  in ambiente acido è tutta spostata verso destra, diversamente l’ equilibrio si sposta verso sinistra in ambiente alcalino e la concentrazione di ammonio si riduce a favore di quella dell’ ammoniaca. Tenete presente che l’ ammoniaca aumenta di ben quattro volte la sua concentrazione quando il pH passa da 7.0 a 7.5 mentre la sua DL50 (dose letale sul 50% dei soggetti) aumenta di ben 5 volte. La presenza di ammonio è fortemente condizionata dal grado di maturazione del filtraggio biologico. Più questo è maturo in termini di colonie minore sarà la sua presenza (vedi ciclo azotato). L’ ammonio è altrettanto assorbito velocemente dalle alghe ed è questa una delle cause maggiori di esplosioni di alghe filamentose. Acquari poco maturi e poco piantumati sono più soggetti alla presenza di queste alghe.

  • Carenza: le piante assumo un colore tendente al verde pallido sino ad arrivare al giallo soprattutto nelle foglie più vecchie che sono le prime a morire. Le nuove foglie o quelle apicali per le piante a stelo invece tendono a restare piccole e a volte assumono un colore rosso bruno,  tutta la pianta rallenta la sua crescita. Questa carenza spesso è accompagnata dalla comparsa di alghe verdi filamentose in particolare quelle a pelliccia o a peli diradati. L’ azoto pur essendo un elemento mobile (la pianta lo trasferisce sulle parti apicali a discapito delle foglie basali) non viene spostato così velocemente come avviene per il potassio. Le concentrazioni consigliate di NO3vanno da 5 a 10 mg/litro.   
  • Eccesso: l’ azoto è così ben tollerato dalle piante che prima di vedere un eccesso tale da provocare danni vi troverete la vasca stracolma di alghe e di pesci morti.

 

 

Potassio (K) – E’ il re degli elementi mobili per la velocità con cui la pianta lo trasferisce verso la zona apicale in caso di necessità.

  • Carenza: il K è in assoluto il macro elemento maggiormente carente negli acquari perché mentre l’ azoto ed il fosforo sono prodotti in vasca a seguito dei processi metabolici e catabolici, questo macro elemento può essere solo introdotto dall’ esterno attraverso la fertilizzazione. E’ bene sapere che le acque di rete per chi le usa in acquario hanno concentrazioni bassissime di K. Un altro aspetto importante è che una sua carenza riduce l’ assorbimento dell’ azoto. Poiché è mobilizzato rapidamente dalle piante i primi sintomi compaiono sulle foglie più basse. Come già visto per la carenza di azoto le foglie inferiori possono ingiallire e mostrare una crescita ridotta. Quasi sempre compaiono sulle foglie larghe anche dei piccoli puntini neri che si trasformano nel tempo in fori i cui margini diventano gialli o neri a seguito di necrosi del tessuto. Altre conseguenze sono il blocco  della ramificazione ed il fusto che può assumere un aspetto di consistenza gommosa. Le concentrazioni del K consigliate vanno da 10 a 20 mg/litro.
  • Eccesso: Questo macro è talmente ben tollerato da tutto l’ ambiente acquatico che vedere un eccesso è quasi impossibile. Ci dovreste mettere anima e cuore, svuotare un flacone intero per creare un eccesso di K mentre è molto facile avere gli effetti di una carenza.

 

 

Fosforo (P) – Introdotto nelle fertilizzazioni come fosfato (PO4) questo macro elemento rientra in molti processi biologici. Spesso lo ritroviamo in vasca come per l’ azoto quale prodotto finale dei processi metabolici e catabolici per cui non sempre è necessario integrarlo ma guai a farlo mancare.

  • Carenza: i segnali più evidenti sono il forte rallentamento della crescita, la parte apicale delle piante a stelo resta piccola. Questo effetto lo vediamo soprattutto nelle piante a sviluppo veloce. Inoltre la sua carenza può bloccare l’ assorbimento di altri nutrienti come il ferro o il potassio. Un altro segnale di carenza da P l’ abbiamo non dalle piante ma dalla comparsa sui vetri ma anche sulle rocce e sulle foglie delle GSA (green spot algue) di cui potete leggere info e modalità di eliminazione collegandovi al seguente link (https://acquariofili.com/conoscere-le-alghe/8/). Le concentrazioni di PO4  consigliate vanno da 0,1 a 1,0 mg/litro.
  • Eccesso: E’ raccomandabile non superare la concentrazione di 1,0 mg/litro anche se in realtà non ci sono problemi per i pesci che tollerano concentrazioni molto più alte. Piante come il myriophyllum crescono meglio con concentrazioni di 2,0 mg/litro di PO4. L’ effetto di concentrazioni alte di fosfato si manifestano con la comparsa delle BBA (https://acquariofili.com/conoscere-le-alghe/3/) ma il fosfato non è il solo responsabile per la comparsa di queste alghe. Altra conseguenza di un eccesso di P è la sua interferenza nell’ assorbimento del ferro.

 

 

Magnesio (Mg)Per capire l’ importanza di questo elemento basta osservare la struttura molecolare della clorofilla. Il Mg è il “core” di questa molecola e una sua carenza significa per la pianta una riduzione della clorofilla e quindi della fotosintesi.

  • Carenza: è subito intuibile che le carenze di questo elemento si manifestano con lo scolorimento delle lamine fogliari che diventano di un verde pallido con tendenza al giallo. Questa decolorazione procede dal margine fogliare verso l’ interno mentre le venature mantengono il loro colore verde. Questo fenomeno di clorosi è esattamente l’ opposto di quella che vediamo con una carenza di ferro e a lungo andare comporta un processo di necrosi dei tessuti sempre partendo dal margine fogliare. Poiché il Mg influenza insieme al calcio (Ca) il GH, quando questo è molto basso è facile che dipenda dal Mg visto che carenze di Ca sono difficili a vedersi.
  • Eccesso: Non sono noti effetti da sovradosaggio di Mg fatto salvo un aumento del valore del GH.

 

 

Calcio (Ca) –  La sua presenza in acqua condiziona fortemente il GH per cui difficilmente vedremo segni che caratterizzano la carenza di questo elemento se non per valori di durezza molto bassi (inferiori a 2 a °dGH).

  • Carenza: Gli apici delle piante presentano foglie piccole e malformate, diciamo quasi accartocciate, perché a fronte di un tessuto fogliare ridotto le nervature restano normali. Altro segno potrebbe essere una decolorazione che riguarda sempre la parte terminale della pianta.
  • Eccesso: E’ difficile osservare un eccesso di Ca in quanto avremmo valori di GH molto alti ma se ciò dovesse verificarsi gli effetti sono quelli riconducibili ad una carenza di Mg visto che alte concentrazioni di calcio possono interferire con l’ assorbimento del magnesio.

 

 

Ferro (Fe) –  Questo elemento è il più importante tra i micro nutrienti in quanto gioca un ruolo essenziale nella formazione della clorofilla. Il Fe a differenza del Mg non rientra nella struttura molecolare della clorofilla ma è un donatore di elettroni nei processi chimici che portano alla formazione di questo pigmento fondamentale nella sintesi clorofilliana. Poiché le piante assumono ferro sotto forma di ione ferroso (Fe2+) facilmente ossidabile a ione ferrico (Fe3+) esso viene protetto attraverso l’ uso di chelanti, soprattutto EDTA. Questo complesso metallo-organico si mantiene stabile per valori di pH che non superano il 7,0. Di questo bisogna tenerne conto quando si fertilizza, quindi cercate di mantenere il pH del vostro acquario ad un valore debolmente acido. Fanno eccezioni quei fertilizzanti che oltre all’ EDTA utilizzano altri chelanti resistenti in ambiente alcalino come EDDHA.

  • Carenza: come abbiamo già visto per il Mg la sua carenza rallenta la produzione di clorofilla ma a differenza della carenza da Mg la decolorazione della foglia (clorosi) riguarda solo il tessuto fogliare ma non coinvolge le venature. La sua carenza è visibile prima nelle piante a stelo a crescita rapida con un veloce viraggio dal verde al giallino. Le foglie colpite sono sempre quelle apicali mentre con il Mg che è un altro elemento mobile che la pianta sposta verso l’ apice vengono coinvolte prima le foglie basali. La carenza di Fe si manifesta anche attraverso la necrosi della lamina fogliare visibile soprattutto nelle piante appartenenti al genere microsorum (felci).
  • Eccesso: Il Fe è l’ elemento che consente alle piante “ rosse” di mantenere il loro bel colore o di esaltarlo ulteriormente. E’ per questo che si fertilizza con concentrazioni più elevate rispetto alle piante verdi. Quando si fertilizza troppo anche le piante verdi possono iniziare ad assumere un colore aranciato sulle parti apicali e più esposte alla luce. Si tratta di un sistema di difesa della pianta verso la forte irradiazione

 

 

Zolfo (S) : Esso rientra sempre nel gruppo dei macroelementi.

  • Carenza: considerato che diversi nutrienti vengono somministrati sotto forma di solfati (SO42-) è difficile osservare una sua carenza. Questa si manifesta con sintomi identici a quella provocata dall’ azoto che possiamo escludere facendo il test dei NO3.
  • Eccesso: Andare in eccesso di S non è difficile ma è sufficiente fare dei cambi parziali come consigliato in tutti i protocolli di fertilizzazione, PMDD compreso, per evitare che questo possa succedere. Le piante mostrano la loro intollerabilità ad un eccesso di zolfo con l’ appassimento e caduta delle foglie più giovani.

 

 

Manganese (Mn)Questo microelemento è caratterizzato dal fatto di presentare diversi stati di ossidazione e quindi nei fertilizzanti spesso è complessato anch’ esso con un chelante. Il Mn svolge importanti e complessi ruoli nelle sintesi biochimiche che portano alla formazione di clorofilla, amminoacidi e nell’ assorbimento dell’ azoto.

  • Carenza: per il suo ruolo nella formazione di clorofilla le piante mostrano una clorosi simile a quella dovuta da carenza di Mg,  spesso si presenta sotto forma di macchie tondeggianti gialle ma a differenza del Mg  i fenomeni necrotici colpiscono tutta la lamina fogliare quindi anche le venature.
  • Eccesso : poiché il Mn inibisce l’ assorbimento del Fe il suo eccesso mostra gli stessi sintomi di clorosi. Una clorosi con test positivo al ferro conferma l’ eccesso di questo microelemento.

 

 

Rame (Cu)Il Cu in acquariofilia è noto soprattutto come agente antialghe per la sua elevata tossicità che si può manifestare anche sugli animali. Tuttavia le piante hanno bisogno di questo micro nutriente utile per molti processi biologici anche se in quantità ridottissime.

  • Carenza: E’ difficile trovare una carenza di Cu in acquario perché le quantità necessarie sono davvero bassissime e quindi la quantità introdotta come “inquinante” nei processi di produzione dei fertilizzanti e da altre fonti come il mangime sono più che sufficienti per le piante. Se mai dovesse esserci una carenza questa si manifesta sulle foglie più giovani perché il rame non viene mobilizzato dalla pianta. Le foglie tendono ad accartocciarsi su di esse.
  • Eccesso: quantità di poco superiori a quelle richieste antagonizzano con l’ assorbimento del ferro e del manganese. Quantità maggiori comportano una degradazione della clorofilla e la rapida morte della pianta.

 

 

Molibdeno (Mo) Questo micro nutriente viene fornito prevalentemente sotto forma di ione MnO42- . Esso è decisivo per l’ utilizzo dell’ azoto in quanto fa parte della nitrato reduttasi che permette la trasformazione dei nitrati in nitriti successivamente trasformati in ammonio per la sintesi di amminoacidi.

  • Carenza : i sintomi ricordano in parte quelli da carenza di N, le foglie presentano macchie verde chiaro o giallastre.
  • Eccesso : le quantità richieste sono talmente basse e il contenuto nei fertilizzanti talmente piccolo che è praticamente impossibile avere problemi legati ad un eccesso.

 

Zinco (Zn) Si potrebbe scrivere un libro per elencare e spiegare tutti i processi biochimici in cui interviene lo Zn.

  • Carenza: Qualunque sia il protocollo , compreso il PMDD, assistere agli effetti di una sua carenza è impossibile ma qualora dovesse verificarsi essa si manifesta con una clorosi senza necrosi dei tessuti.
  • Eccesso: Impossibile arrivare ad un eccesso con qualsiasi protocollo di fertilizzazione anche se si dovesse commettere errori nei dosaggi.

 

Boro (B)Questo microelemento interviene nella formazione della parete cellulare sia delle foglie che delle radici.

  • Carenza: Comporta un ridotto assorbimento di Mg, Ca, K e PO43- con conseguenti effetti sulla crescita delle piante.
  • Eccesso: Impossibile arrivare ad un eccesso con qualsiasi protocollo di fertilizzazione, compreso errori nei dosaggi.

 

Cloro (Cl)Il cloro è un microelemento indispensabile per la crescita delle piante che lo assorbono come ione Cl(cloruro) in quantità veramente bassa per cui se si superano in acqua le quantità necessarie il Cl può diventare tossico. Oltre ad intervenire in alcuni processi della fotosintesi esso regola l’apertura e chiusura degli stomi attraverso cui le piante assorbono i nutrienti.

  • Carenza: non si verifica mai ma ammesso che succeda le piante manifesterebbero una clorosi delle venature.
  • Eccesso: spesso gli acquari presentano un eccesso di ioni cloruro visto che è introdotto frequentemente come sotto prodotto dei fertilizzanti. L’ ottima tollerabilità delle piante a questo micro elemento non comporta la manifestazione di nessun sintomo.

 

 

E’ vietato copiare anche parzialmente questo articolo e relative immagini senza l’autorizzazione dell’autore e dello staff di acquariofili.

 

 

©www.acquariofili.com

 

 

Diffusore CO2 con siringa e piastrella

Diffusore CO2 con siringa e piastrella

Questa è una semplice guida per creare un diffusore fai da te capace di propagare Co2 con effetti molto simili a diffusori ben conosciuti sul mercato.
Creando questo diffusore per la Co2 e paragonandolo a quelli di marche rinomate ne emerge una soluzione valida ed economica per poter ovviare ad alcuni rimedi.
Vediamo che attrezzatura serve ed il procedimento per poterlo realizzare.

 

Attrezzatura:

  • Un taglierino,
  • Una pinza,
  • Una siringa,
  • Un pezzetto di mattonella,
  • Carta abrasiva o un dremel munito di accessori e della colla ciano acrilato (Super Attack).

 

Procedimento:

Con un taglierino, tagliamo una siringa più o meno a metà e teniamo solo la parte inferiore, quella con il beccuccio per l’ago, per intenderci, al quale, successivamente, congiungeremo il tubo che lo collega alla bombola della Co2. Tramite una pinza spezziamo il pezzo della mattonella fino a modellarla riducendola fino alla grandezza che ci interessa (poco più del diametro della siringa). A questo punto bisogna rimuovere la parte lucida della mattonella e modellarla formando un dischetto. Questo procedimento lo si può fare utilizzando una carta abrasiva o un dremel con appositi accessori adeguati.

Modellata la piastrella a forma di dischetto della grandezza che ci serve (si ricorda poco più del diametro della siringa) ci basterà appoggiare la siringa sul pezzo di ceramica tenendola ferma con una mano e con l’altra andremo ad applicare la colla su tutto il contorno della siringa a contatto con il dischetto.

Un metodo alternativo è quello di modellare il pezzo di piastrella a forma di dischetto e farlo divenire, senza esagerare, poco più piccolo del diametro della siringa e infilarlo dentro come se fosse un  tappo a pressione. Anche in questo caso, una volta incastrato il dischetto di ceramica dentro il pezzo di siringa bisognerà applicare la colla su tutto il contorno della siringa a contatto con il dischetto.

Augurando un “buon fai da te” e sperando di aver fatto cosa gradita con questa guida, di seguito vengono illustrate alcune immagini che documentano il risultato ottenuto per la costruzione di un Diffusore CO2 con siringa e piastrella .

Diffusore con siringa e pistrella Diffusore con siringa e pistrella Diffusore con siringa e pistrella

 

Si ringrazia Simone De Rosa per la cortese collaborazione nella fornitura della descrizione del procedimento e per la gentile concessione sull’utilizzo delle proprie immagini.

 

 

E’ vietato copiare anche parzialmente questo articolo e relative immagini senza l’autorizzazione dell’autore e dello staff di acquariofili.

©www.acquariofili.com

 

 

  Nome scientifico:Hygrophila corymbosa salicifolia Genere:Hygrophila Famiglia:Acanthaceae Luogo di provenienza: Sud-Est asiatico Dimensioni: altezza 25-60cm larghezza 20-35cm Temperatura: 15-30 ° C Ph:5.0-9.0 Luce:Media - Alta Posizione: laterale Crescita:Veloce Difficoltà:Media Riproduzione Per talea

Hygrophila Guianensis

Hygrophila Guianensis

Nome scientifico: Hygrophila Guianensis

Genere: Hygrophila

Famiglia: Acanthaceae

Luogo di provenienza: America meridionale

Dimensioni: altezza 15-50cm larghezza 20-35cm

Temperatura: 20-30 ° C

Ph: 6.0-8.0

Luce: Media – Alta

Posizione: Posteriore

Crescita:Veloce

Difficoltà: Facile

Riproduzione Per talea

Note: La Hygrophila Guianensis appartiene alla grande famiglia delle Acanthaceae, è una delle vaste specie appartenenti alle Hygrophila e proviene dal Sud America, la si può trovare infatti in Venezuela, Bolivia e Guyana.

È una pianta che non richiede moltissimo impegno nel coltivarla perché abbastanza facile da gestire.

Presenta una lamina fogliare dalla colorazione verde mediamente acceso, specie sulle nuove foglie germogliate. La forma lanceolata assegna alla pianta un fascino particolare, per dirla semplicemente ha una forma ellittica che si conclude a punta.

Gradisce acqua con un PH variabile tra i 6 e gli 8, una durezza totale (GH) tra 4 e 8 ed una temperatura tra i 20° e i 30° ma, da esperienza di coltivazione, già sui 23°/24° ha una buona crescita crescita.

Anche se la Hygrophila Guianensis è di facile gestione ha le proprie esigenze a livello di nutrienti e di illuminazione.

In presenza di una illuminazione intensa ,CO2 e una buona fertilizzazione crescerà in modo molto imponente con steli robusti e sviluppati in altezza,se a questo uniamo un buon fondo fertile e una buona concentrazione di potassio che non deve mai mancare altrimenti la pianta se ne andrà rapidamente in carenza.

Come tutte le Hygrophile presenta un apparato radicale imponente quindi si consiglia l’inserimento di almeno 5cm di substrato per farla ancorare bene e non scoprire le radici che in natura utilizza non solo all’assorbimento dei nutrienti mobili ma anche per ancorarsi essendo una pianta prevalentemente palustre.

Coltivata nelle giuste condizioni è una pianta molto imponente impiegata sopratutto per coprire scatole di filtri o il fondo della vasca creando dei muri verdi,inoltre in vasca aperta potrà emergere crenado una bellissima chioma.

La crescita rapida di questa pianta porta immancabilmente ad una frequente potatura che favorisce la riproduzione della stessa per talea.

Si consiglia di potare lo stelo tra gli internodi, ripiantando la parte apicale che continuerà a crescere mentre nello stelo tagliato madre darà vita a due o piu’ nuove gemme e a sua volta nuove piantine autosufficenti.

 

tabella co2

Co2 in acquario

Sentiamo spesso parlare dell’utilizzo della Co2 in acquario, ma altrettanto spesso le idee in merito sono piuttosto confuse e non si sa bene da dove partire. Questa vuole essere una guida che spiega in quali casi utilizzarla, come erogarla e in che quantità.

Sappiamo che in natura le piante all’aria aperta, anche se la co2 è praticamente prossima all’1 % del volume totale (400 ppm) durante il processo di fotosintesi, trasformano la co2 presente nell’aria, per produrre ciò di cui hanno bisogno per il loro metabolismo (glucosio e derivati) convertendola in ossigeno.

Nelle nostre vasche, in cui introduciamo piante che molte volte sono state adattate all’ambiente acquatico, la quantità di co2 disponibile non è sufficiente per supportare la loro crescita, soprattutto nel caso di alcune specie a crescita rapida, le quali presentano un metabolismo molto veloce.

 

Vi starete chiedendo allora perché in alcuni acquari senza CO2 le piante crescono comunque?

In acquario è possibile trovare una certa quantità di Co2 in acquario disciolta, in quanto essa proviene da diversi processi, in particolare:

  • All’interno del filtro e nello specifico, la co2 viene prodotta dai batteri durante il processo del ciclo azotato (qui potete trovare informazioni più dettagliate) trasformando ammonio e nitriti in NO3 nitrati catturando una molecola di ossigeno e rilasciando co2;
  • Viene prodotta durante il processo di respirazione cellulare della fauna presente;
  • Tramite lo scambio gassoso che avviene grazie al movimento di superficie dato dalla pompa che fa girare l’acqua.

Nonostante la presenza di questi fattori, per molte specie di piante, la quantità disciolta disponibile non è sufficiente e quindi si ricorre alla somministrazione forzata per mezzo di un impianto di concimazione carbonica.

Oltre al contributo alla fertilizzazione, la co2 erogata ha un effetto acidificante della nostra acqua proporzionale alla quantità disciolta, quindi in alcuni biotopi come quelli amazzonici o asiatici molto piantumati, viene impiegato come mezzo alternativo agli acidi umici o fulvici per mantenere un ph acido idoneo ad alcune specie di pesci che ospitiamo nelle nostre vasche senza dover essere costretti nell’utilizzo di catappa, pigne di ontano, foglie di quercia, torba per abbassare il ph che rilasciano in vasca grosse quantità di tanini rendendo l’acqua dal giallo all’ambrato.

 

Ma… quanta ne va erogata?

La Co2 in acquario apporta notevoli benefici alle piante e al ph ma un eccesso porta al decesso di tutta la fauna presente in vasca per anossia, quindi è necessario sapere come e quanta dosarne.

Sappiamo che il ph viene influenzato dal kh (qui potete trovare approfondimenti in merito a KH e pH) che svolge un’azione tampone su di esso, impedendo oscillazioni del valore del pH estremamente dannose per la fauna dell’acquario.

La co2 influisce su questo rapporto in proporzione alla quantità disciolta, quindi maggiore sarà l’erogazione e dissoluzione del gas in acqua, maggiormente potremo apprezzare la discesa del ph, ma c’è un LIMITE.

[pullquote-right]Questo limite varia in base al kh che avremo in vasca, in sostanza ad ogni punto di kh corrisponde un valore minimo di ph raggiungibile oltre il quale iniziano i problemi e decessi.[/pullquote-right]

Per darci un indicatore del giusto rapporto tra kh e ph abbiamo a disposizione la tabella che ottiene come risultante la concentrazione in ppm (parti per milione oppure mg/l) associato ad ogni valore kh/ph.

Per capirci, se abbiamo un kh 3, il limite minimo raggiungibile di ph sarà 6.5, a questo valore di ph avremo una concentrazione di Co2 in acquario pari a 33 ppm che è circa la concentrazione ottimale per la crescita rigogliosa delle piante senza compromettere il benessere dei pesci. Se alzassimo di qualche bolla la Co2 in acquario apprezzeremmo una ulteriore discesa del ph a 6.4 e otterremmo una concentrazione di co2 di 42ppm che inizia a dar fastidio alla fauna acquatica, un ulteriore aumento delle bolle erogate porterebbe al decesso.

Per semplificare potremmo affermare che ad ogni valore di kh esiste un giusto valore di ph ottenuto dalla concentrazione di co2, considerando il valore ideale tra 20-30 ppm fino ad massimo tollerabile di 39/40 ppm.

Co2 in acquario

 

Come leggere la tabella?

Partendo dal KH misurato in vasca con test a reagente, si segue la riga orizzontale (freccia 1) corrispondente fino a trovare le celle verdi che indicano il valore ottimale espresso in ppm o mg/l  (NON IN BOLLE DA EROGARE) in cui le piante traggono il maggior beneficio senza apportare danni alla fauna come invece accadrebbe per le celle da gialle a rosse.

A questo punto si segue la colonna perpendicolare al valore corretto (freccia 2) fino alla parte superiore della tabella dov’è indicato il valore di PH da raggiungere per ottenere la suddetta quantità di Co2. Nella zona azzurra troviamo di conseguenza le corrispondenti concentrazioni di co2, a livelli non sufficienti.

phmetro500x4002

PhMetro

[dropcap]P[/dropcap]hMetro una parola semplice qundo complessa infatti più di una volta ci è capitato di leggere vari post in merito alla misurazione del pH e l’eventuale utilizzo di phmetri digitali.

test Ph

Con questo articolo vorrei approfondire alcuni aspetti relativi a questo argomento e fornire qualche consiglio utile alla sua gestione.

[pullquote-left]Come sappiamo il pH è uno dei parametri fondamentali che dobbiamo monitorare all’interno delle nostre vasche.[/pullquote-left]

In genere vengono utilizzati dei test a reagente (che sfruttano delle reazioni colorimetriche con successiva comparazione con la scala apposita) per fornire un’indicazione sul valore.

Purtroppo, però questi test sono caratterizzati da una scala che cresce con incrementi di 0.5 punti (salvo qualche eccezione – ad esempio il test pH 6.0-7.6 della JBL che ha un incremento di 0.2 punti), il che dal mio punto di vista, li rende poco idonei per alcune applicazioni, come il dosaggio della CO2 in vasca.

phmetro

In questo caso anche “piccole” variazioni di pH possono portare a variazioni notevoli nella quantità di CO2 effettivamente disciolta (per fare un esempio in presenza di erogazione di CO2, considerando un KH 4 se il valore di pH è 6.5 otterremo, incrociando i dati con apposita tabella, una concentrazione di 45 ppm, mentre se ci troviamo a pH 7 il valore ottenuto è di 14 ppm, si passa dall’eccesso a una quantità non sufficiente).

 

tabella phmetro

Per questo motivo è possibile ricorrere all’utilizzo di un PhMetro elettronico. Quest’ultimi utilizzano un sistema differente per la quantificazione del pH, ricorrendo a misure potenziometriche (in breve misurano la differenza di potenziale che si forma a causa della differenza di concentrazione di ioni H+ rispetto a una membrana apposita).

Il cuore di questo tipo di strumento è composto da una particolare membrana in vetro speciale (è composta non solo da silice, ma sono presenti anche ossidi di calcio e sodio in varie percentuali) la cui composizione premette il funzionamento dell’elettrodo stesso.

phmetro2

Le membrane di questo tipo di PhMetro sono caratterizzate dalla capacità di “sentire” selettivamente lo ione H+ (in parole povere la membrana è in grado di fornire un segnale relativo solo a questo particolare ione, avendo interferenze minime dalle altre componenti presenti in soluzione a patto che la membrana sia in buone condizioni). L’elettrodo è genericamente sferico in quanto questa forma garantisce la massima superficie di contatto e la minima resistenza al passaggio di corrente, ma anche una certa fragilità.

 

 

 

Quindi come approcciarci nel modo migliore all’utilizzo di questo strumento?

Innanzitutto, questa famiglia di elettrodi fornisce potenziali stabili e riproducibili solo dopo averli lasciati in soluzione (nel nostro caso acqua) per un certo periodo di tempo, in modo da IDRATARLI. Al loro interno infatti è presente una soluzione a pH 7 e uno strato di gel che deve espandersi all’interno del vetro stesso per garantire il corretto funzionamento.

Lo step successivo prevede la TARATURA dello strumento stesso utilizzando delle soluzioni tampone caratterizzate da un titolo o concentrazione ben definita (in commercio esistono diversi buffer sia già pronti all’ uso o in bustine da disciogliere in acqua di osmosi in quantità definite dal produttore). Solitamente per la taratura di questo PhMetro si utilizza una taratura a due standard, poiché permette di minimizzare l’errore sulla lettura del valore rispetto a una taratura con un singolo standard (mi riferisco a phmetri di tipo commerciale, estremamente diffusi su vari tipi di piattaforme online). Nulla ci vieta comunque di utilizzare anche la terza soluzione tampone.

Si procede quindi alla (eventuale) preparazione delle soluzioni tampone a pH 6.86 e 4.01 (i phmetri meno costosi riescono a misurare valori con una cifra decimale, non mi affiderei più di tanto alla seconda cifra decimale se presente, a causa dell’errore che si ha intrinsecamente nella misura stessa).

phmetro3

Si procede con la misura del tampone a pH 6.86; agendo sull’apposita vite si modifica il valore (segnato sul display del PhMetro ) fino a ottenere quello del buffer. Si sciacqua l’elettrodo con acqua di osmosi e si elimina l’eccesso di acqua aiutandosi con della carta assorbente morbida (come quella di un fazzolettino. La stessa operazione va ripetuta con il secondo tampone a

pH 4.01. Consiglio questi due tamponi perché in genere nei nostri acquari, specialmente in presenza di erogazione di CO2, ci troviamo a pH neutro o debolmente acido (se invece abbiamo a che fare con biotopi tipo Malawi/Tanganika potrebbe essere conveniente usare il tampone a 9.81 – quindi l’ordine di taratura e prima con tampone a pH 6,86 e poi a pH 9,81). Fatto ciò dobbiamo procedere ad una verifica immergendo l’elettrodo sciacquato ed asciugato nuovamente nella soluzione tampone a pH 6.86; se la lettura coincide il pHmetro è pronto all’ uso. La taratura deve essere effettuata periodicamente, per evitare letture errate! (La taratura dovrebbe essere ripetuta) mediamente ogni 15 giorni per un uso intenso o 30 giorni se l’uso è sporadico)

[pullquote-left]CONSERVAZIONE. Bisogna ricordare che per conservare correttamente il nostro strumento PhMetro la membrana NON DEVE essere mantenuta asciutta, ma è preferibile mantenerla avvolta in uno strato di cotone imbevuto con una sostanza con adeguata forza ionica per ridurre la perdita di selettività. Nel nostro caso possiamo utilizzare il tampone a pH 4, in mancanza di quest’ultimo meglio un po’ di acqua piuttosto che niente. Bisogna evitare l’utilizzo di acqua distillata o RO per mantenere umida la membrana, perché l’assenza di forza ionica fa perdere in selettività e sensibilità nei tempi di risposta.[/pullquote-left]

Ultima nota: questo genere di strumenti necessita di sostituzione periodica (in base alla conservazione e all’utilizzo – ad esempio le sonde in continuo richiedono una sostituzione ogni 2 anni circa) in quanto con l’invecchiamento della membrana il pH letto si sposta verso valori più alcalini.

 

NB: le foto sono state prese dal web , qualora il proprietario le riconoscesse come proprie e ne vuole la rimozione basta comunicarcelo e provvederemo immediatamente alla rimozione.

 

 

 

 

 

 

E’ vietato copiare anche parzialmente questo articolo e relative immagini senza l’autorizzazione dello staff di acquariofili e del proprietario.

Guida impaginata da Marco Ferrara

©www.acquariofili.com